

知識工学 第12回

二宮 崇 1

教科書と資料

- 教科書
 - Artificial Intelligence: A Modern Approach (3rd Edition): Stuart Russell, Peter Norvig (著), Prentice Hall, 2009
- この講義のウェブサイト

http://aiweb.cs.ehime-u.ac.jp/~ninomiya/ke/

本日の講義内容

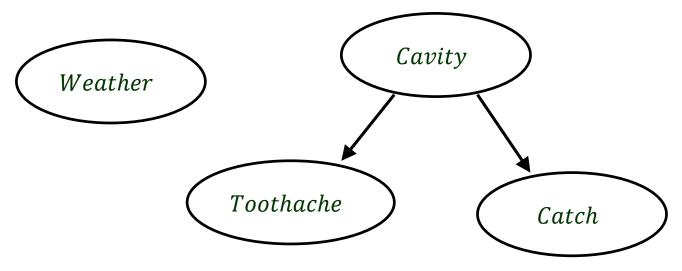
- 確率推論(§14)
 - ベイジアンネット(§14.1)
 - ベイジアンネットの意味論(§14.2)
 - 完全結合確率分布による意味論(§14.2.1)
 - コンパクト性とノードの順序化
 - ノードを追加する良い手順
 - ベイジアンネットのトポロジカルな意味論(§14.2.2)

確率推論 (§14) 不確実な領域における知識表現 (§14.1)

- ベイジアンネット
 - 完全結合確率分布を表現する確率変数間の依存関係を 表す非循環有向グラフ(DAG)
 - 有向グラフィカルモデルとも呼ばれる

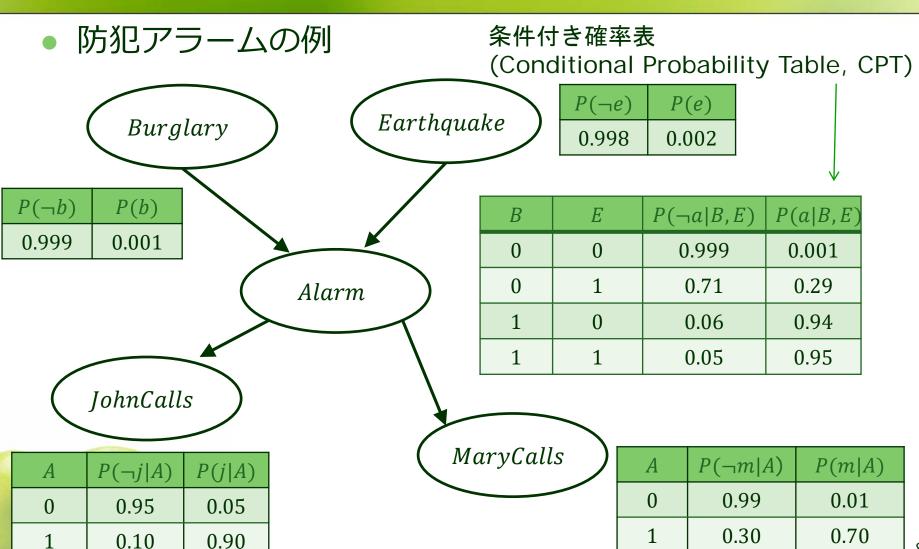
- ベイジアンネット
 - ノードは確率変数に対応
 - $\bullet X \to Y$
 - XはYの親ノード
 - XはYに直接の影響を持つ
 - 独立や条件付き独立の関係を表す。
 - 各ノード X_i は $P(X_i|Parents(X_i))$ を持つ

• 13章の虫歯の例



- Weatherは独立
- ToothacheとCatchはCavityが与えられた時に条件付き独 立

- 防犯アラームの例
 - 防犯アラーム: 泥棒を検知する。稀に地震にも反応し てしまう
 - ジョン: 隣人でアラームが鳴ったらあなたに電話して もらう。時々電話と混同。
 - メアリー: "。大音量の音楽好きで時々アラームに気づかない。
 - 泥棒と地震はアラームが鳴り出す確率に直接影響を与える。
 - ジョンとメアリーはアラームに対してのみ直接影響を 受ける



- 条件付き確率表
 - 親ノードの値の組合せに対する条件付き確率
 - *K*個の親ノードに対し、2^k個の確率値を持つ
 - 確率変数は省略して1文字で表現。
 - 論理確率変数に対しては偽に対する確率値は省略されることが多い。
 - $P(X|Y_1,Y_2,\cdots,Y_n)$ に対し、 Y_1,Y_2,\cdots,Y_n の値の組合せを縦方向に展開し、Xの値を横方向に展開。各行の合計値

が1。

В	E	$P(\neg a B,E)$	P(a B,E)
0	0	0.999	0.001
0	1	0.71	0.29
1	0	0.06	0.94
1	1	0.05	0.95

- 完全結合分布の表現 (§14.2.1)
 - $P(X_1 = x_1 \land \dots \land X_n = x_n)$ を $P(x_1, \dots, x_n)$ と略記する
 - $P(x_1, \dots, x_n) = \prod_{i=1}^n P(x_i | parents(x_i))$
 - ただし、 $parents(x_i)$ は $Parents(X_i)$ に含まれる変数の具体的な値の組

例: アラームが鳴り(a)、しかし、泥棒(b)も入らず、地震(e)も起きずに、ジョン(j)とメアリー(m)が電話をする確率 $P(j \land m \land a \land \neg b \land \neg e)$

- $= P(j|a)P(m|a)P(a|\neg b \land \neg e)P(\neg b)P(\neg e)$
- $= 0.90 \times 0.70 \times 0.001 \times 0.999 \times 0.998 = 0.000628$

チェインルール

```
P(x_{1}, \dots, x_{n})
= P(x_{n}|x_{n-1}, \dots, x_{1})P(x_{n-1}, \dots, x_{1})
= P(x_{n}|x_{n-1}, \dots, x_{1})P(x_{n-1}|x_{n-2}, \dots, x_{1})P(x_{n-2}, \dots, x_{1})
\dots
= P(x_{n}|x_{n-1}, \dots, x_{1})P(x_{n-1}|x_{n-2}, \dots, x_{1}) \dots P(x_{2}|x_{1})P(x_{1})
= \prod_{i=1}^{n} P(x_{i}|x_{i-1}, \dots, x_{1})
```


- ベイジアンネットを構築するための方法
 - $Parents(X_i) \subseteq \{X_{i-1}, \dots, X_1\}$ とする(ノードIDをうまく ふれば満たせる)
 - チェインルールに対し、

$$P(X_i|X_{i-1},\cdots,X_1) = P(X_i|Parents(X_i))$$

という条件付き独立性を導入したのがベイジアンネット

• 例

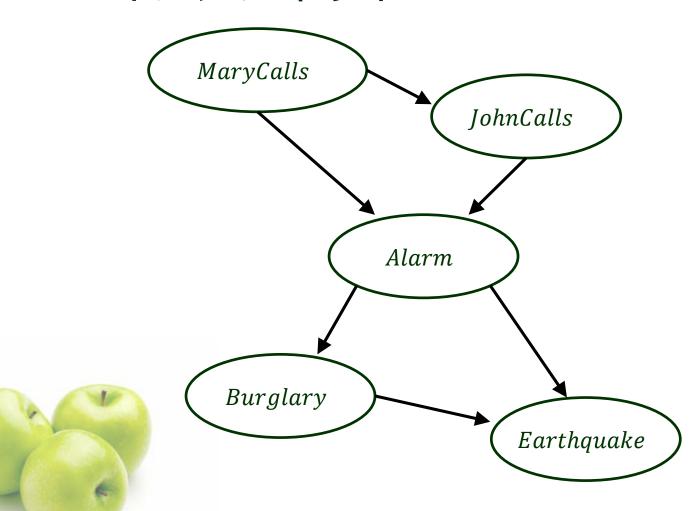
P(MaryCalls|JohnCalls,Alarm,Earthquake,Burglary) = P(MaryCalls|Alarm)

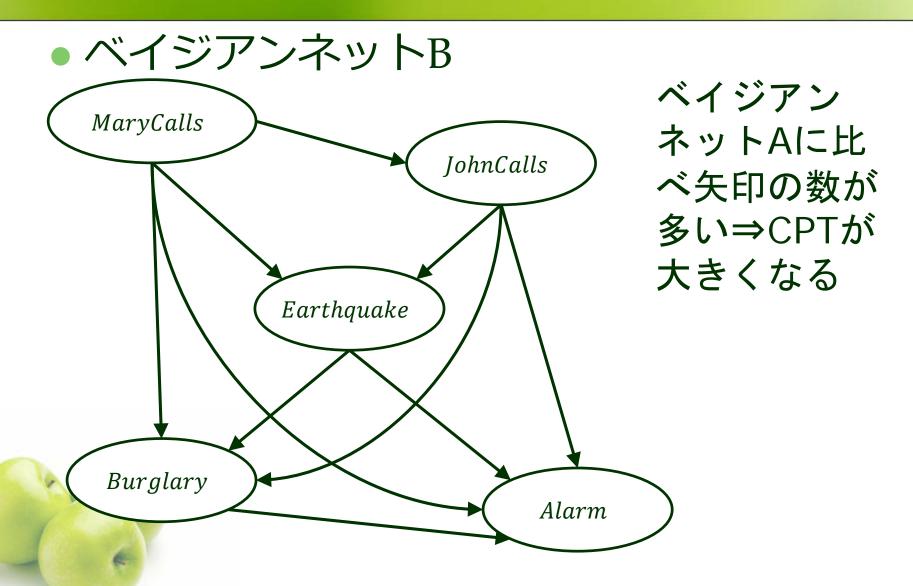
完全結合確率分布と正しく対応

- チェインルールによるベイジアンネットの構築例
 P(MaryCalls, JohnCalls, Alarm, Earthquake, Burglary)
 - = P(MaryCalls|JohnCalls,Alarm,Earthquake,Burglary)
 - $\times P(JohnCalls | Alarm, Earthquake, Burglary)$
 - $\times P(Alarm | Earthquake, Burglary)$
 - $\times P(Earthquake|Burglary) \times P(Burglary)$
- = $P(MaryCalls|Alarm) \times P(JohnCalls|Alarm) \times P(Alarm|Earthquake,Burglary) \times P(Earthquake) \times P(Burglary)$

- コンパクト性とノードの順序化
 - ベイジアンネットの構築の方法は一通りだけではない。 任意の順番にノードを追加できる(チェインルール)

ベイジアンネットA





- ノードを追加する良い手順
 - 因果モデル: P(effect|cause)
 - 診断モデル:P(cause|effect)
 - 診断モデルよりも因果モデルを優先する方が 良いベイジアンネットが得られる
 - 独立性や条件付き独立性の仮定が得られやすいため
- つまり、根本原因を最初に加え、次にそれらが影響する変数を加える、ということを繰り返す。

ベイジアンネットにおける条件 付き独立性 (§14.2.2)

- トポロジカルな意味論その1
 - 各ノードは、その親ノードの値が与えられれば、その 子孫でないノードと条件付き独立である。
 - この条件付き独立の命題とCPTから、完全結合分布が 再構築できる。⇒数値的な意味論とトポロジカルな意 味論が等価
- トポロジカルな意味論その2
 - 各ノードは、マルコフブランケット(その親と子、子の親)の値が与えられれば、ネットワーク内の他の全ての ノードと条件付き独立になる。

ベイジアンネットにおける条件 付き独立性 (§14.2.2)

